璧勮涓績 > 浜у搧鏂囩尞闆?> Stem Cell (13)

  鉁旀湰綃囪鏂囦嬌鐢ㄥ崕鑱斾駭鍝侊細Human OneArray  
 Journal Of Virology. 2009, 83(20):10548-56. doi: 10.1128/JVI.01250-09.
 Baculovirus Transduction of Mesenchymal Stem Cells Triggers the Toll-Like Receptor 3 Pathway. 
 Guan-yu Chen, Hsiao-chiao Shiah, Hung-ju Su, Chi-yuan Chen, Yung-jen Chuang, Wen-hsin Lo, Jie-len Huang, Ching-kuang Chuang, Shiaw-min Hwang, Yu-chen Hu
  Abstract
Human mesenchymal stem cells (hMSCs) can be genetically modified with viral vectors and hold promise as a cell source for regenerative medicine, yet how hMSCs respond to viral vector transduction remains poorly understood, leaving the safety concerns unaddressed. Here, we explored the responses of hMSCs against an emerging DNA viral vector, baculovirus (BV), and discovered that BV transduction perturbed the transcription of 816 genes associated with five signaling pathways. Surprisingly, Toll-like receptor-3 (TLR3), a receptor that generally recognizes double-stranded RNA, was apparently upregulated by BV transduction, as confirmed by microarray, PCR array, flow cytometry, and confocal microscopy. Cytokine array data showed that BV transduction triggered robust secretion of interleukin-6 (IL-6) and IL-8 but not of other inflammatory cytokines and beta interferon (IFN-beta). BV transduction activated the signaling molecules (e.g., Toll/interleukin-1 receptor domain-containing adaptor-inducing IFN-beta, NF-kappaB, and IFN regulatory factor 3) downstream of TLR3, while silencing the TLR3 gene with small interfering RNA considerably abolished cytokine expression and promoted cell migration. These data demonstrate, for the first time, that a DNA viral vector can activate the TLR3 pathway in hMSCs and lead to a cytokine expression profile distinct from that in immune cells. These findings underscore the importance of evaluating whether the TLR3 signaling cascade plays roles in the immune response provoked by other DNA vectors (e.g., adenovirus). Nonetheless, BV transduction barely disturbed surface marker expression and induced only transient and mild cytokine responses, thereby easing the safety concerns of using BV for hMSCs engineering.
   

Topic Related Articles

  鉁旀湰綃囪鏂囦嬌鐢ㄥ崕鑱斾駭鍝侊細Human OneArray  
 Scientific Reports. 2015, 5:10106. doi: 10.1038/srep10106.
 Characterization of a Self-renewing and Multi-potent Cell Population Isolated from Human Minor Salivary Glands
 
 
 Lin Lu, Yan Li, Ming-juan Du, Chen Zhang, Xiang-yu Zhang, Hai-zhou Tong, Lei Liu, Ting-lu Han, Wan-di Li, Li Yan, Ning-bei Yin, Hai-dong Li, Zhen-min Zhao
  Abstract
Adult stem cells play an important role in maintaining tissue homeostasis. Although these cells are found in many tissues, the presence of stem cells in the human minor salivary glands is not well explored. Using the explant culture method, we isolated a population of cells with self-renewal and differentiation capacities harboring that reside in the human minor salivary glands, called human minor salivary gland mesenchymal stem cells (hMSGMSCs). These cells show embryonic stem cell and mesenchymal stem cell phenotypes. Our results demonstrate that hMSGMSCs have the potential to undergo mesodermal, ectodermal and endodermal differentiation in conditioned culture systems in vitro. Furthermore, in vivo transplantation of hMSGMSCs into SCID mice after partial hepatectomy shows that hMSGMSCs are able to survive and engraft, characterized by the survival of labeled cells and the expression of the hepatocyte markers AFP and KRT18. These data demonstrate the existence of hMSGMSCs and suggest their potential in cell therapy and regenerative medicine.
   

  鉁旀湰綃囪鏂囦嬌鐢ㄥ崕鑱斾駭鍝侊細Human OneArray  
 Northeast Bioengineering Conference (nebec). 2014 April 25-27.
 FGF2 and oxygen: Regulators of intergrin alpha-11 and extracellular matrix molecules
 
 
 Alexandra Grella, Denis Kole, Tanja Dominko
  Abstract
Recently, derivation and maintenance of pluripotent stem cells has been focused on environmental cues, with emphasis on the role of extracellular matrix (ECM) and adhesion molecules (AM). We have developed a novel approach that allows for induction of stem cell gene expression in human dermal fibroblasts (hDF) without the use of transgenes. By culturing cells in low oxygen (5% O2) with addition of exogenous FGF2 we have shown that hDF in defined culture conditions express stem cell genes and show translation and nuclear translocation of stem cell transcription factors. We have demonstrated that this shift is coupled with an FGF2-dependent down-regulation of the majority of AM and ECM targets; specifically induction of a significant down-regulation of integrin alpha 11 (Itga11) transcript and results in Itga11 loss from focal adhesions. Investigation of the mechanism by which FGF2 may be involved in regulation of Itga11 is being investigated by studying the molecular pathway downstream of FGF2 ligand that may be involved in the loss of Itga11 and associated collagen I attachment. Dissecting the molecular mechanisms involved in regulation through modulation of extracellular environment and its effect on plasticity may provide insight into the acquisition into the mechanisms involved in reprogramming of differentiated cells.
   

Product Related Articles

  鉁旀湰綃囪鏂囦嬌鐢ㄥ崕鑱斾駭鍝侊細Human OneArray  
 Bmc Cancer. DOI 10.1186/s12885-015-1671-5.
 Upregulation of MicroRNA-19b predicts good prognosis in patients with hepatocellular carcinoma presenting with vascular invasion or multifocal disease
 
 
 
  Abstract
Background After surgical resection of hepatocellular carcinoma (HCC), recurrence is common, especially in patients presenting with vascular invasion or multifocal disease after curative surgery. Consequently, we examined the expression pattern and prognostic value of miR-19b in samples from these patients. Methods We performed a miRNA microarray to detect differential expression of microRNAs (miRNAs) in 5 paired samples of HCC and non-tumoral adjacent liver tissue and a quantitative real-time polymerase chain reaction (PCR) analysis to validate the results in 81 paired samples of HCC and adjacent non-tumoral liver tissues. We examined the associations of miR-19b expression with clinicopathological parameters and survival. MiR-19b was knocked down in Hep3B and an mRNA microarray was performed to detect the affected genes. Results In both the miRNA microarray and real-time PCR, miR-19b was significantly overexpressed in the HCC tumor compared with adjacent non-tumor liver tissues (P < 0.001). The expression of miR-19b was significantly higher in patients who were disease-free 2 years after surgery (P < 0.001). High miR-19b expression levels were associated with higher 偽-fetoprotein levels (P = 0.017). In the log-rank test, high miR-19b was associated with better disease-free survival (median survival 37.107 vs. 11.357; P = 0.022). In Cox multivariate analysis, high miR-19b predicted better disease-free survival and overall survival (hazards ratio [HR] = 0.453, 95 % confidence interval [CI] = 0.245鈥?.845, P = 0.013; HR = 0.318, CI = 0.120鈥?.846, P = 0.022, respectively). N-myc downstream regulated 1 (NDRG1) was downregulated, while epithelial cell adhesion molecule (EPCAM), hypoxia-inducible factor 1-alpha (HIF1A), high-mobility group protein B2 (HMGB2), and mitogen activated protein kinase 14 (MAPK14) were upregulated when miR-19b was knocked down in Hep3B. Conclusions The overexpression of miR-19b was significantly correlated with better disease-free and overall survival in patients with HCC presenting with vascular invasion or multifocal disease after curative surgery. MiR-19b may influence the expression of NDRG1, EPCAM, HMGB2, HIF1A, and MAPK14.
   

  鉁旀湰綃囪鏂囦嬌鐢ㄥ崕鑱斾駭鍝侊細Human OneArray  
 Amino Acids. doi: 10.1007/s00726-015-1956-7. Epub 2015 Mar 24..
 Homocysteine thiolactone and N-homocysteinylated protein induce pro-atherogenic changes in gene expression in human vascular endothelial cells
 
 
 
  Abstract
Genetic or nutritional deficiencies in homocysteine (Hcy) metabolism lead to hyperhomocysteinemia (HHcy) and cause endothelial dysfunction, a hallmark of atherosclerosis. In addition to Hcy, related metabolites accumulate in HHcy but their role in endothelial dysfunction is unknown. Here, we examine how Hcy-thiolactone, N-Hcy-protein, and Hcy affect gene expression and molecular pathways in human umbilical vein endothelial cells. We used microarray technology, real-time quantitative polymerase chain reaction, and bioinformatic analysis with PANTHER, DAVID, and Ingenuity Pathway Analysis (IPA) resources. We identified 47, 113, and 30 mRNAs regulated by N-Hcy-protein, Hcy-thiolactone, and Hcy, respectively, and found that each metabolite induced a unique pattern of gene expression. Top molecular pathways affected by Hcy-thiolactone were chromatin organization, one-carbon metabolism, and lipid-related processes [−log(P value) = 20鈥?1]. Top pathways affected by N-Hcy-protein and Hcy were blood coagulation, sulfur amino acid metabolism, and lipid metabolism [−log(P value)] = 4鈥?1; also affected by Hcy-thiolactone, [−log(P value) = 8鈥?4]. Top disease related to Hcy-thiolactone, N-Hcy-protein, and Hcy was 鈥榓therosclerosis, coronary heart disease鈥?[−log(P value) = 9鈥?6]. Top-scored biological networks affected by Hcy-thiolactone (score = 34鈥?0) were cardiovascular disease and function; those affected by N-Hcy-protein (score = 24鈥?5) were 鈥榮mall molecule biochemistry, neurological disease,鈥?and 鈥榗ardiovascular system development and function鈥? and those affected by Hcy (score = 25鈥?7) were 鈥榓mino acid metabolism, lipid metabolism,鈥?鈥榗ellular movement, and cardiovascular and nervous system development and function.鈥?These results indicate that each Hcy metabolite uniquely modulates gene expression in pathways important for vascular homeostasis and identify new genes and pathways that are linked to HHcy-induced endothelial dysfunction and vascular disease.
   

锘?link href="../inc_files/style_v11.css" rel="stylesheet" type="text/css" />
锘?div id="footer">

鐗堟潈澹版槑 | ©2006 - 2016 Copyright Phalanx Biotech All rights reserved.
鍗庤仈鐢熺墿縐戞妧鑲′喚鏈夐檺鍏徃        30078 鏂扮甯傜瀛﹀伐涓氬洯鍖虹鎶€浜旇礬6鍙?妤?nbsp;       E-mail : [email protected]


锘?
Pathway Map
五星单式稳赚